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Abstract

Woody plant encroachment (WPE) is transforming grasslands globally, yet accurately map-
ping this process remains challenging. State-funded, publicly available high-resolution
aerial imagery offers a potential solution, including the USDA’s National Agriculture
Imagery Program (NAIP) and NSF’s National Ecological Observatory Network (NEON)
Aerial Observation Platform (AOP). We evaluated the accuracy of land cover classification
using NAIP, NEON, and both sources combined. We compared two machine learning
models—support vector machines and random forests—implemented in R using large train-
ing and evaluation data sets. Our study site, Konza Prairie Biological Station, is a long-term
experiment in which variable fire and grazing have created mosaics of herbaceous plants,
shrubs, deciduous trees, and evergreen trees (Juniperus virginiana). All models achieved
high overall accuracy (>90%), with NEON slightly outperforming NAIP. NAIP underper-
formed in detecting evergreen trees (52-78% vs. 83-86% accuracy with NEON). NEON
models relied on LiDAR-based canopy height data, whereas NAIP relied on multispectral
bands. Combining data from both platforms yielded the best results, with 97.7% overall
accuracy. Vegetation indices contributed little to model accuracy, including NDVI (normal-
ized digital vegetation index) and EVI (enhanced vegetation index). Both machine learning
methods achieved similar accuracy. Our results demonstrate that free, high-resolution
imagery and open-source tools can enable accurate, high-resolution, landscape-scale WPE
monitoring. Broader adoption of such approaches could substantially improve the moni-
toring and management of grassland biodiversity, ecosystem function, ecosystem services,
and environmental resilience.

Keywords: bush encroachment; eastern red cedar; land use; land cover; supervised
classification

1. Introduction

Woody plant encroachment (WPE) in grasslands negatively affects grasslands world-
wide [1-5]. Common drivers of WPE include local factors (e.g., intensive grazing, fire
suppression, and increased woody plant propagules) and global pressures (e.g., increased
atmospheric CO; and shifts to higher rainfall per event) [6,7]. Reversing late-stage WPE
is difficult, even with frequent fire, reduced grazing, and drought [6,8-10]. Timely, high-
accuracy detection of encroaching shrubs and trees can enable management interventions at
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earlier stages of WPE when they are more effective [10-12]. WPE often causes grassland ob-
ligate species to decline, including pollinators [13,14], songbirds [15,16], upland birds such
as the threatened Lesser Prairie-Chicken [17], and others [18]. Woody encroachment can
also reduce freshwater recharge [19,20] and forage for economically important grazers [21].
Therefore, remote sensing WPE is also critical for measuring changes in biodiversity and
ecosystem services.

In the Great Plains, tallgrass prairie is undergoing widespread WPE via clonal re-
sprouting shrubs (i.e., Cornus, Prunus, and Rhus species), deciduous trees, and evergreen
trees, primarily Eastern Red Cedar (ERC from here on, Juniperus virginiana) [1,15,22,23]. In
tallgrass prairies, moderate fire exclusion (fire returns > 3 years) can result in shrubland
expansion [1,22]. With less frequent fire, trees often expand, becoming a closed canopy
in 20 to 40 years [22,24]. In the Flint Hills, the largest remaining landscape of tallgrass
prairie, at least 45% of current grasslands are burned so infrequently that shrubs and tree
expansion is likely unless management practices change [25]. Increases in grazing rate can
result in further WPE [24].

Logistics and field conditions pose major challenges to studying WPE. Woody en-
croachment creates thickets of dense and (often) thorny vegetation that is time-consuming
to measure. WPE increases the abundance of insect disease vectors, especially ticks, pre-
senting a safety risk [26]. In a version of the “observer effect,” measuring encroachment
can alter WPE, as taking measurements sometimes requires cutting or trampling through
woody vegetation. Remote sensing could make measurements of WPE faster, more accurate,
and more extensive than is possible with on-the-ground approaches. In instances where
historical ground-based measurements are unavailable, remote sensing can also provide
context [8,18,19,27].

Remote sensing and machine learning have long been used to classify land use and
land cover [2,28-30]. Until recently, coarse-resolution satellite data were more common,
such as the 10-50 m resolution of longer-running state-run satellites [5,30-34]. WPE can
be difficult to detect with coarse-resolution imagery because shrubs and some trees are
much smaller than these resolutions. The growth of higher-resolution remote sensing from
uncrewed aerial vehicles (UAVs), low-flying planes, and micro-satellites could rapidly
improve our ability to remote WPE and other complex vegetation [35-38]. For instance,
high-resolution remote sensing allowed Brandt and colleagues [39] to identify millions of
small trees across Northern Africa—a region thought to be nearly treeless.

Options for remote sensing vegetation are many, but we focused on publicly available
data from low-flying planes, which combine high resolution and high spatial extent. In the
United States, the U.S. Department of Agriculture (USDA) National Agriculture Imagery
Program (NAIP) has provided consistent, widespread, and freely available high-resolution
imagery of the continental U.S. since the mid-2000s. NAIP is a large investment with
a mixed impact on peer-reviewed literature (reviewed by [36]). The U.S. National Science
Foundation now provides high-resolution remote sensing data through the National Eco-
logical Observatory Network’s (NEON) aerial observation platform (reviewed by [37]).
NEON covers a smaller extent than NAIP (81 total sites versus the entire continental U.S.),
but a wider range of data types per site, including LiDAR, hyperspectral data, and de-
rived products. Additions such as hyperspectral imagery are promising (e.g., [40,41]), but
their adoption by ecologists and related fields is still less common than many expected.
Therefore, questions remain: is the learning curve of using these products preventing
more widespread use? Does the fact that these platforms provide only one round of mea-
surements per year limit their utility? How accurate are NEON’s derived products? For
instance, recent work found that some derived NEON products had a weak correlation
with ground-based measurements at one site [42,43], even though ground-based measure-



Remote Sens. 2025, 17, 2224

30f19

ments indicate a strong difference between functional groups, such as leaf area index and
foliar nitrogen [44]. On the other hand, NEON has been successfully used to identify tree
crowns across many sites [45]. Thus, we are left with a mixed assessment—high-resolution
imagery shows promise for detecting WPE and similar vegetation shifts, but the use of
these platforms is still relatively rare compared to UAVs and satellites.

We assessed the accuracy of using high-resolution remote sensing to measure WPE.
We aimed to determine an approach that accurately measures WPE while limiting computa-
tional effort and data products to a reasonably skilled graduate student, post-doc, professor,
or user at a private or state-run agency. For instance, more input data typically increase
model accuracy, but imagery such as hyperspectral data requires substantial computing
power and is less accessible to many users. Therefore, we restricted ourselves to “off the
shelf” products, such as NEON'’s “estimated canopy height” based on LiDAR and vegeta-
tion indices, including the widely used Normalized Difference Vegetation Index (NDVI).
We used only free, open-source machine learning models. This decision was motivated by
observations that a lack of computational skills impedes wider usage of NAIP, NEON, and
similar resources [36,37].

We performed a factorial modeling exercise exploring a factorial combination of
two remote sensing platforms (NAIP and NEON), crossed with the machine learning
approaches—support vector machines (SVMs) and random forests models (RFs). We
hypothesized that (1) LIDAR canopy height would bolster model accuracy substantially, as
past attempts to machine-classify shrubs without LiDAR proved difficult; (2) shrubs would
have the lowest accuracy because shrub height and traits fall between herbaceous species
and trees, and because of the high diversity of traits within the shrub community [46]; and
(3) ERC would have high accuracy due to its unique evergreen leaf type compared to the
other plant functional groups.

2. Methods
2.1. Site Description

Our work took place at Konza Prairie Biological Station (KPBS), a National Science
Foundation long-term ecological research (LTER) site with 3487 ha of native unplowed
tallgrass prairie located in the Flint Hills in northeastern Kansas (Figure 1). The climate has
high seasonal variability with an average high of 26.6 °C in July and —2.7 °C in January.
Annual rainfall is 835 mm, with 75% falling during the growing season. The soils are non-
glaciated with thin, rocky upland soils (mainly from the Florence series), deeper lowlands
(often from the Tully series), and complex benches, outcrops, and slopes that connect these
two soil types.

KPBS consists of 60 different management units, with replicates spanning 1-, 2-, 3-, 4-,
and 20-year fire return intervals, as well as treatments ungrazed, grazed by bison, or grazed
by cattle. These fire return intervals span the range found throughout the region [47]. The
fire and grazing treatments have created a mosaic of contrasting land covers, including
areas dominated by herbaceous species, shrubs, deciduous trees, and evergreen trees. The
herbaceous-dominated areas can be floristically diverse, with high grass dominance in
areas without bison or cattle, and mosaics of tallgrasses, short-grass grazing lawns, and
patches of tall forbs in areas with bison and cattle [48]. Areas dominated by shrubs typically
have minimal herbaceous cover [1,49]. The dominant shrubs (primarily the species Cornus
drummondii, Rhus glabra, and Prunus americana) are all clonal, creating thickets with >10 m
diameters. Shrub heights range from <0.5 m for young clonal stems to over 3 m for older
stems [43]. At the lowest elevations and some intermittent streams, riparian forests have
formed, dominated primarily by oaks (mostly Chinkapin oak, Quercus muehlenbergii and
Bur oak, Quercus macrocarpa) [50]. Outside of these deepest lowlands, the height and
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continuity of deciduous trees are lower, with species including honeylocust (Gleditsia
triacanthos), redbud (Cercis canadensis), and several elm species. ERC is the only evergreen
native to the region, and primarily found in areas without bison or frequent fire. ERC is
also one of the most widespread trees in North America, with a range that stretches from
100° W latitude in the west to the Atlantic Ocean in the east [51]. Figure 1B-E shows the
widespread ranges of our most common encroaching species [51].
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Figure 1. (A) An estimate of the historical extent of arid and semi-arid Great Plains grasslands
(light grey; based on U.S. EPA ecoregions), temperate Great Plains grasslands (dark grey; based on
EPA ecoregions), the Flint Hills ecoregion (teal outline), and our study site (black star). (B) Shows
an elevation map of our study site, Konza Prairie Biological Station. (C-F) show some of the
range limits of some of the most dominant encroaching species. These include clonal shrubs (B,C),
deciduous trees (D), and evergreen conifers, ERC (E). The base map for (A) is redrawn from EPA
ecoregions Level II, and the base maps are from [51]. All are publicly available under a Creative
Commons license.

2.2. Imagery

We tested each data source alone and together (NAIP + NEON) for a total of
three models for each machine learning method, resulting in six models. Table 1 out-
lines the inputs used for each image, and Hulslander and colleagues [52] report formulas
for vegetation indices. The images were captured in separate years: 2019 for NAIP and
2020 for NEON. Between these two years, there were no major weather fluctuations [48] or
major fires, making significant changes in vegetation unlikely over this time period.
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Table 1. Summary of input variables and their descriptions used from each source.
Source # Bands Inputs Input Description
Red Redness of each pixel
Green Greenness of each pixel
Blue Blueness of each pixel
Red Neighborhood * Avg. redness of surrounding pixels
USDA 9 Green Neighborhood * Avg. greenness of surrounding pixels
NAIP Blue Neighborhood * Avg. blueness of surrounding pixels
Near-Infrared Value of near-infrared wavelength
Near-Infrared Neighborhood * Avg. values of near-infrared of surrounding pixels
Calculated from NIR and red bands, indicates live
NDVI . .
green vegetation density
Enhanced Vegetation Index (EVI) Similar to NDVI, EVI estimates vegetation greenness
and biomass
Normalized Difference Nitrogen Relative nitrogen concentration in cano
Index (NDNI) 8 Py
Normalized Difference Lignin Uses shortwave IR to estimate lignin content in
Index (NDLI) the canopy
NSF Soil-Adjusted Vegetation Index Reduces soil brightness in areas where vegetation
NEON 8 (SAVI) cover is low
Atmospherically Resistant Reduces atmospheric noise from dust, smoke,
Vegetation Index (ARVI) rain, etc.
Calculated from NIR and red bands, indicates live
NDVI . .
green vegetation density
NDVI Neighborhood * Avg. NDVI values of surrounding pixels
Canopy Height (LiDAR) Height of canopy above bare earth
NEON +
NAIP 17 All of the above

* “Neighborhood” refers to an average of all neighboring pixels using the Queen’s rule to determine which pixels
were included as neighbors.

NAIP imagery: We sourced this image from the USDA NAIP [53,54], which was
captured on 10 July 2019 by low-flying planes. The native resolution was 0.6 x 0.6 m. We
used bilinear interpolation to transform this image to a standard grid with 2 x 2 m pixels.

NAIP imagery contributed nine bands. The native imagery provided four bands (red,
green, blue, and infrared), and we derived five more (red neighborhood, green neighbor-
hood, blue neighborhood, infrared neighborhood, and NDVI; Table 1). Neighborhood
calculations took the average value of all surrounding pixels. The red neighborhood cal-
culation, for example, averaged the redness of the pixels immediately surrounding each
pixel, including the diagonal neighbors (known as the “Queen’s rule”). We added neighbor-
hood averages after early rounds of machine learning noticeably erroneously misclassified
some deep shadows of shrubs and deciduous trees as ERC. Shadows are probably present
because the image was taken later in the growing season than NEON, after full leaf-on.

NEON imagery: NSF NEON imagery was captured in June 2020 by low-flying airplanes
and had a native resolution of 1 x 1 m, downloaded at [55,56]. Using bilinear interpolation,
we upscaled these images to the same resolution and common grid as NAIP [57,58]. NEON
provided many data products meant to capture the biophysical attributes of vegetation.
For example, NDVI is calculated as the difference between near-infrared (NIR) and red
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bands, divided by the sum of NIR and red bands. We used eight derived vegetation indices
from NEON: the Enhanced Vegetation Index (EVI), Normalized Difference Nitrogen Index
(NDNI), Normalized Difference Lignin Index (NDLI), Soil-Adjusted Vegetation Index
(SAVI), Atmospherically Resistant Vegetation Index (ARVI), NDVI, NDVI Neighborhood,
and Canopy Height (LiDAR; Table 1). We included NDVI Neighborhood because this
vegetation index was found in both datasets. We did not include Leaf Area Index because
of its high overlap with SAVI. NEON’s 10 cm RGB was unusable for our purposes due
to distortions along seamlines, but such distortions were not in the derived products.
LiDAR data consisted of ~10 returns per m?, and canopy height was the top return per
1 x 1 m pixel. All other NEON indices were calculated using spectral data [52].

2.3. Machine Learning Methods

Machine learning uses a set of user inputs (training data) to learn and classify unknown
data. We compared two supervised machine learning methods, SVMs and RFs, because
they are commonly used in remote sensing and accessible to many users [33,59].

Support Vector Machines: SVMs are a supervised nonparametric classification model
that uses a fixed optimal hyperplane to split data into discrete categories [60,61] (Figure 2A).
SVMs are popular for their ability to work with high-dimensional data [59] and their
accuracy even with small training sets relative to spatial extent [33,62].

Margin (B) RF

A An A
PO OPON

o * % FONPOWON

Figure 2. (A) We used a simple linear form of SVM like the one shown here (adapted from [60]).
Each circle represents a training sample, where color denotes the land cover class. (B) A schematic
of a random forest, where each decision tree is one of a “forest” of decision trees. Each circle and
connecting line is decision node, defined by an “if statement” such as, “if Canopy height > 1.0 m,
progress left on this branch, if <1.0 m progress right.”. Green connections show the progression of
decisions made for the bootstrapped sample used to inform each tree. Note that we have kept the
topology of each tree constant for this example, but in reality, the topology varies across trees. In
this toy example, the random forest model would choose the left-most cover class as the predicted
cover class.

In SVMs, each pixel is a series of numbers, with one value from each input, which
are mapped with each input as a new dimension during SVM creation. Points closest
to the hyperplane are support vectors and are the most important in determining the
decision boundary. While many linear hyperplanes may exist in the data, SVM chooses the
largest margin between points, allowing for some misclassification. Many datasets lack
linear breaks between data, which SVMs can circumvent by shifting the data into a higher
dimension using kernels. We ran SVMs in R [63] using the ‘e1071" package. We determined
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model parameters using the ‘tune.svm’ function, considering input parameters spanning
a range of degree 2 to 5, gamma 0.1-4, and cost of 1-3 [64]. This function performs 10-fold
cross-validation, and we assumed used a radial kernel parameter in all cases. The final
model parameters were NAIP (degree = 3, gamma = 0.1111, cost = 1), NEON (degree = 3,
gamma = 0.1250, cost = 1), and NAIP + NEON (degree = 3, gamma = 0.0.0580, cost = 1).

Random Forest: RF is a nonparametric supervised machine learning technique that
tends to have high accuracy and low out-of-bag error. The building block of RF is the
decision tree, which uses nodes to split data into smaller subsets to predict the pixel
class (much like multiple logistic regression). Examples are shown in Figure 2B. RFs use
a bagging approach, where each decision tree is built with a random selection of input
variables, creating a forest of different tree structures to limit overfitting [65]. The user can
set the number of decision trees (ntree) and the number of input variables used to split each
node (mtry), which is often approximately the square root of the number of inputs [33].
RFs make predictions based on majority voting; each decision tree outputs a predicted
class for each pixel, and the class predicted the most times is the classification for that pixel
(Figure 2B) [59]. For example, if an RF has 100 trees, and 56 trees predict a pixel as grassland,
33 trees predict shrubland, and 11 trees predict a deciduous tree, then the ensemble RF
model would predict that pixel to be grassland. Adding more decision trees can improve
accuracy, but an excessive number of trees yields diminishing returns in accuracy. Lastly,
RF models can determine the GINI decrease for each input, which measures the amount of
accuracy lost by an input variable, indicating the relative importance of each model input.

We ran RF models in R [63] using the ‘randomForest’ package, and model inputs were
optimized using the ‘best.randomForest’ function, with an ntree range of 100 to 1000 and
mtry of 1 to 5 [66]. Based on this tuning, we used an mtry of the 3 for the NAIP and NEON
models, and an mtry of 4 for the NAIP + NEON model (mtry is the number of variables
assessed at each decision tree node). For consistency, the number of trees was equal in all
RF models, with an ntree of 500 (the number of trees in the RF).

2.4. Training Data

We considered five land cover categories: (1) grassland (herbaceous-dominated areas);
(2) shrubs; (3) deciduous trees; (4) ERC trees; and (5) and other (roads, water, buildings, and
agriculture). The training dataset consisted of ground-truth polygons collected using high-
precision GPS units (<2 m accuracy) and computer-drawn polygons. We collected ground-
truth polygons from June to August 2021 using semi-stratified random sampling. We
created computer-drawn polygons by tracing vegetation types using a 2020 NEON RGB-10
cm imagery [67] and a publicly available 1 m? RGB image from 2019 by Maxar technologies,
accessed via Google Earth Pro [68]. Neither image was used in the model training. We
drew polygons in locations where species were known from time in the field. We collected
3635 training polygons, with training proportions of each cover class reflecting estimated
landscape cover, resulting in 300,328 2 x 2 m pixels of known vegetation type, totaling
3.42% of the study area (Table 2). Polygons were split into training and evaluation groups
before being pixelized to reduce inflated accuracies due to spatial autocorrelation. We
aimed to use 70% of the data for model training and 30% for model evaluation (sometimes
referred to as model ‘validation’). After we separated the polygons into training and
evaluation groups and then converted polygons into pixels, the proportion of training and
evaluation pixels remained similar (71% and 29%, respectively).
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Table 2. Summary of training data. Training proportions are similar to landscape cover.

# Ground-  # Computer-

% of Total

Class Truthed Drawn Total Polygons  Total Pixels Total Area (m?) Training
Polygons Polygons
Deciduous Trees 68 620 688 37,215 150,533.5 12.7%
Grass 246 160 406 179,799 719,013.9 60.3%
Easter Red Cedar 51 506 557 5537 22,751.6 1.9%
Shrubs 341 1578 1919 71,101 285,690.1 24%
Other * 0 65 65 6676 13,484.3 1.1%
Total 706 2929 3635 300,328 1,191,473 100%

* Other = water, roads, and buildings.

2.5. Assessing Accuracy

To assess the accuracy of each model, we considered four metrics: producer accuracy
(PA), user accuracy (UA), overall accuracy (OA), and Kappa. PA refers to the number
of pixels correctly classified from the evaluation data and was calculated as the number
of correctly classified pixels for a class divided by the total number of evaluation pixels
for that class. UA refers to the number of pixels classified as, for instance, grassland that
were actually grassland on the ground (i.e., in the evaluation data). UA was calculated as
the number of correctly classified pixels for a class divided by the total number of pixels
assigned to that cover class. OA is an estimate of accuracy among all predicted cover types
and was calculated as the ratio of the total number of correctly classified pixels to the total
number of pixels in the evaluation data. Kappa measures the accuracies by comparing the
classification outcome versus randomly assigning values. We calculated Kappa as (overall
accuracy — random accuracy)/(1 — random accuracy). Kappa ranges from —1 to 1, with
0 indicating that the model performed the same randomly assigning values, <0 indicating
that the model performed worse than random, and >0 indicating that the model performed
better than random.

2.6. Run Time and Other Logistics

Run time is a consideration for some machine learning approaches. We reported run
time for both model training and extrapolation to the remainder of our site (a total of
8,781,520 pixels). All models were run on a Dell XPS 8930 with relevant specifications of
64 GB RAM and an Intel® Core™ i9-9900K processor, with 3.6 GHz speed, eight cores,
and the ability to perform 16 threads. Note that R runs most processes through the RAM
and processor cores, including those used here. During runs, R was the only user-directed
application open.

3. Results
3.1. Model Accuracy Overview

SVMs versus RFs yielded nearly identical OA (<2.6% difference; Table 3). NEON
models generally performed better than NAIP, and the NAIP + NEON models were the
most accurate. For NAIP-only models, RFs were slightly more accurate (OA: 92.9%, Kappa:
0.877) than SVMs (OA: 90.3%, Kappa: 0.831; Table 3). For NEON-only models, the accuracy
of RFs (OA: 97.2%, Kappa: 0.951) and SVMs was similar (OA: 96.8%, Kappa: 0.945; Table 3).
NAIP + NEON models showed effectively no differences between RFs (OA: 97.7%, Kappa:
0.962) and SVMs (OA: 97.7%, Kappa: 0.964; Table 3). Figure 3D,E show classified vegetation
maps comparing all three data sources, where the machine learning method was RF for
all panels.
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Table 3. Accuracy results of all image and machine learning methods.

Machine

Source Learning OA*  Kappa Accuracy Df;aduous Grassland  ERC Shrubs  Other **
rees
Method
PA 0.72 0.98 0.52 0.85 0.94
SVM 0903 0831 UA 0.89 0.94 0.78 0.82 0.97
NAIP
PA 0.77 0.98 0.56 0.93 0.96
RE 0929 0877 UA 0.92 0.97 0.75 0.85 0.97
PA 0.96 0.99 0.84 0.98 0.97
SVM 0968 0945 UA 0.98 0.98 0.86 0.94 0.97
NEON
PA 0.93 0.99 0.83 0.98 0.96
972 951
RE 09 095 UA 0.98 0.99 0.85 0.94 0.97
PA 0.95 0.99 0.87 0.97 0.97
V 977 964
NAIP SYM 09 096 UA 0.97 0.98 0.90 0.96 0.99
+
PA 0.94 0.99 0.85 0.98 0.96
NEON RF 0.977 0.962
UA 0.98 0.99 0.87 0.95 0.98

* OA: overall accuracy; PA: producer accuracy; UA: user accuracy. ** Other = water, roads, and buildings.

0 100 200 Meters
{ I |

NAIP RGB Aerial Image Red Neighborhood Canopy Height

NAIP NEON NAIP+NEON

Figure 3. A small portion of the study area, zoomed in to show detail: (A) aerial imagery from NAIP
RGB (red-green-blue; naked eye view); (B) visual of values in most important NAIP input for model
training; (C) visual of values in most important NEON input for model training; (D-F) visuals of
RF-classified models for all three images.
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For all models, the grassland and “other” categories had UA and PA values of at least
94% (Table 3). The three categories of woody plants (shrubs, deciduous trees, and ERC)
were more difficult to classify but still had high accuracy ratings. Shrubs and deciduous
trees had very high PA and UA accuracies (>92%) in NEON and NAIP + NEON, but NAIP
alone performed slightly worse, with a PA of 85-93% for shrubs and 72-77% for deciduous
trees and a UA of 82-85% for shrubs and 89-92% for deciduous trees (Table 3). Deciduous
trees were most often misclassified as shrubs, and shrubs were most often misclassified
as deciduous trees (Tables 4-6). All models had the lowest accuracies for ERC (Table 3),
especially the NAIP-only models, with PAs of 52-56% and UAs of 75-78% (Table 4). This
low PA means that the models are undercounting ERC by classifying it as another cover
class (mostly deciduous trees), rather than misclassifying other categories as ERC (also
referred to as errors of commission) (Tables 4 and 5). Most of these errors were ERC pixels
classified as deciduous trees (Tables 4-6).

Table 4. Confusion matrix for NAIP-only models, starting with SVMs and followed by RFs; columns
represent the classes of evaluation pixels, and rows represent the classes of model classified pixels *.

NAIP SVM (Support Vector Machine) Model

Known Class —

Predicted Class J. Decid. Tree Grassland ERC Shrub Other
Decid. Tree 9303 (72.4%) 19 (0%) 457 (28.1%) 665 (3.2%) 6 (0.4%)
Grassland 325 (2.5%) 48,825 (98.3%) 163 (10%) 2437 (11.8%) 72 (4.8%)

ERC 198 (1.5%) 22 (0%) 839 (51.6%) 18 (0.1%) 3(0.2%)
Shrub 2999 (23.4%) 789 (1.6%) 168 (10.3%) 17,521 (84.9%) 1 (0.1%)
Other 18 (0.1%) 19 (0%) 0 (0%) 0 (0%) 1405 (94.5%)

NAIP RF (Random Forest) Model

II,<1, ggiv::’tlzegléls:ss_l Decid. Tree Grassland ERC Shrub Other
Decid. Tree 9852 (76.7%) 26 (0.1%) 439 (27%) 370 (1.8%) 10 (0.7%)
Grassland 305 (2.4%) 48667 (98%) 127 (7.8%) 1010 (4.9%) 62 (4.2%)

ERC 276 (2.1%) 28 (0.1%) 914 (56.2%) 3 (0%) 3(0.2%)
Shrub 2389 (18.6%) 927 (1.9%) 147 (9%) 19,249 (93.3%) 0 (0%)
Other 21 (0.2%) 26 (0.1%) 0 (0%) 0 (0%) 1412 (95%)

* The percent of pixels for each row by column is given in parentheses to gauge errors of omission and commission.

Table 5. Confusion matrix for NEON-only models, starting with SVMs and followed by RFs; columns
represent the classes of evaluation pixels, and rows represent the classes of model-classified pixels *.

NEON SVM (Support Vector Machine) Model

Known Class —

Predicted Class | Decid. Tree Grassland ERC Shrub Other
Decid. Tree 11,877 (92.5%) 15 (0%) 137 (8.4%) 114 (0.6%) 11 (0.7%)
Grassland 81 (0.6%) 49,072 (98.8%) 32 (2%) 718 (3.5%) 43 (2.9%)

ERC 193 (1.5%) 5 (0%) 1333 (81.9%) 12 (0.1%) 1(0.1%)
Shrub 679 (5.3%) 551 (1.1%) 125 (7.7%) 19,788 (95.9%) 1(0.1%)
Other 13 (0.1%) 31 (0.1%) 0 (0%) 0 (0%) 1431 (96.2%)




Remote Sens. 2025, 17, 2224

11 of 19
Table 5. Cont.
NEON RF (Random Forest) Model
II’<r ggg?eglélsasss_l Decid. Tree Grassland ERC Shrub Other
Decid. Tree 11,891 (92.6%) 13 (0%) 161 (9.9%) 30 (0.1%) 9 (0.6%)
Grassland 83 (0.6%) 48,973 (98.6%) 15 (0.9%) 420 (2%) 46 (3.1%)
ERC 210 (1.6%) 8 (0%) 1346 (82.7%) 17 (0.1%) 2 (0.1%)
Shrub 651 (5.1%) 642 (1.3%) 105 (6.5%) 20,165 (97.7%) 2 (0.1%)
Other 8 (0.1%) 38 (0.1%) 0 (0%) 0 (0%) 1428 (96%)

* The percent of pixels for each row by column is given in parentheses to gauge errors of omission and commission.
y

Table 6. Confusion matrix for NAIP + NEON models, starting with SVMs and followed by
RFs; columns represent the classes of evaluation pixels, and rows represent the classes of model

classified pixels *.

NAIP + NEON SVM (Support Vector Machine) Model

Known Class —

Predicted Class |, Decid. Tree Grassland ERC Shrub Other
Decid. Tree 12,157 (94.7%) 34 (0.1%) 112 (6.9%) 85 (0.4%) 12 (0.8%)
Grassland 55 (0.4%) 49,388 (99.4%) 23 (1.4%) 511 (2.5%) 27 (1.8%)

ERC 127 (1%) 3 (0%) 1413 (86.8%) 7 (0%) 7 (0.5%)
Shrub 487 (3.8%) 232 (0.5%) 79 (4.9%) 20,029 (97.1%) 0 (0%)
Other 17 (0.1%) 17 (0%) 0 (0%) 0 (0%) 1465 (97%)

NAIP + NEON RF (Random Forest) Model

Known Class —

Predicted Class | Decid. Tree Grassland ERC Shrub Other
Decid. Tree 12,043 (93.8%) 21 (0%) 149 (9.2%) 22 (0.1%) 4 (0.3%)
Grassland 47 (0.4%) 49,220 (99.1%) 13 (0.8%) 364 (1.8%) 14 (0.9%)

ERC 180 (1.4%) 14 (0%) 1388 (85.3%) 7 (0%) 4 (0.3%)
Shrub 569 (4.4%) 387 (0.8%) 77 (4.7%) 20,239 (98.1%) 0 (0%)
Other 4 (0%) 32 (0.1%) 0 (0%) 0 (0%) 1465 (98.5%)

* The percent of pixels for each row by column is given in parentheses to gauge errors of omission and commission.

3.2. Importance of Different Imagery Data Inputs

For NAIP, the most valuable input variable was red neighborhood (visualized in
Figure 3B), followed by blue neighborhood and red and blue light intensity (Figure 4A).
NDVI was effectively tied with three other variables for the lowest contribution to this
model’s accuracy. The most valuable input variable for NEON was canopy height (visu-
alized in Figure 3C), followed far behind by NDVI and NDVI neighborhood (Figure 4B).
The commonly used EVI had the second-lowest contribution to model accuracy. The
NAIP + NEON REF also relied heavily on LiDAR, followed by five inputs from NAIP: red
neighborhood, blue neighborhood, red localized, blue localized, and green neighborhood.
In the combined model, NEON-derived products other than canopy height provided very

minimal contributions to model accuracy (Figure 4C).
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Figure 4. Average importance of each variable in Random Forest model building for: (A) NAIP-only,
(B) NEON-only, and (C) NAIP and NEON together. Mean Gini decrease measures the accuracy lost
when that variable is removed. See Table 1 for input definitions.

3.3. Model Run Time and Other Logistics

The time it took to train each model on the training data varied greatly, with the
shortest time at only 23 min for RF NEON, and the longest at 4 h and 49 min for SVM
NAIP (Table 7). RF and SVM models had substantial differences between training run
times; the slowest RF model still took less time (1 h and 5 min) than the fastest SVM model
(1 h and 37 min) (Table 7). The time it took the models to predict the entire study site
(8,781,520 pixels) was again substantially lower for RFs at 7:20-10:43 min, whereas SVM
classification took 2:05-6:15 h (Table 7).

Table 7. Run times for model training and prediction.

Model Training Time (300,328 Pixels)

NAIP NEON NAIP + NEON
SVM 4:49:00 1:43:00 1:37:00
RF 0:30:00 0:23:00 1:05:00
Model Prediction Time (8,781,520 Pixels Pixels)
Model Run Time NAIP NEON NAIP + NEON
SVM 6:15:25 3:05:08 2:04:59
RF 0:09:59 0:10:43 0:07:20

4. Discussion

Until recently, NAIP was the primary high-resolution, freely available, widely available
source of aerial remote sensing in the U.S.A. [36]. We found that with a few manipulations
(use of neighborhoods) and readily available machine learning methods, NAIP imagery
succeeded at identifying grasslands, shrubs, and deciduous trees. NEON [55,56] substan-
tially increased our ability to accurately identify all forms of woody vegetation, especially
ERC. NEON imagery also made classification less subject to the type of machine learning
model. NEON-derived increases in accuracy were due to LiDAR canopy height, with
spectral data from NAIP providing much of the remaining contributions to model accuracy.
Therefore, in the locations where NEON imagery is available (81 total sites), the two data
sources could be used synergistically—NEON for its LIDAR and NAIP for its undistorted
red, green, blue, and NIR. The addition of LIDAR to NAIP coverage, where possible, could
bolster remote sensing of WPE, considering that our best-performing models had very high
accuracy: >99.1% for grasslands, 98.1% for shrubs, 94.8% for deciduous trees, 85.3% for
ERC, and 98.5% for other (Table 6).
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Challenges and success in remote sensing WPE: Differences in deciduous versus evergreen
functional types are a fundamental divide in tree functional types. We hypothesized that
ERC would have much higher accuracy due to its distinct leaf structure and water content
compared to other woody plants in the region. These characteristics should theoretically
register in NEON-derived products (e.g., NDVI, NDLI, NDNI). However, ERC had the
lowest accuracy in all models and was often undercounted, in some cases by almost
half (Tables 4—6). This problem was acute when we only used NAIP imagery (Table 4).
Other studies also had difficulty detecting ERC in aerial imagery, specifically when ERC
was at a low density [69,70]. At densities below 30%, Kaskie and colleagues [69] found
<50% accuracy in ERC classification using aerial imagery alone—very similar to our NAIP-
only models (Table 4). However, using other predictor variables, such as slope, aspect,
and Euclidean distance, to the nearest ERC pixel, Kaskie and colleagues [70] were able
to increase the overall accuracy of low-density ERC to 84.7%. ERC density was also low
across our site, but accuracy was high (78-94%; Table 3) in models including NEON data.
Therefore, NEON and its LIDAR appear to overcome some challenges of low-density ERC
detection and, presumably, other evergreen tree species. However, more work is needed
to determine better and more efficient methods to accurately classify ERC and similar
evergreen trees at low densities. For instance, ERC might need to be a higher proportion
of the training data, even if it is a relatively rare cover class across a landscape. Winter
imagery could be especially helpful for boosting ERC detection.

LiDAR substantially increased the accuracy of detecting shrubs and deciduous trees.
Models with LiDAR were more accurate and LiDAR canopy height was by far the most
influential input for RF models (Figure 4). This is consistent with many other studies finding
that LiDAR-based canopy height was among the most important inputs for accurately
classifying vegetation types, including separating woody plants from herbaceous plants
and differentiating between species of trees [71-73]. For instance, Jin and Mountrakis [74]
analyzed 37 studies that compared accuracy using multispectral imagery alone versus
classification with LiDAR added and found increases in model accuracy for almost all
studies, including a 68% increase in one study. This again points toward value added from
NEON, but specifically from the addition of LiDAR, as NEON vegetation indices other
than canopy height played a minor role in increasing model accuracy in the NAIP + NEON
model (Figure 4). NEON also provides a full suite of hyperspectral data, which we did not
test but could have yet more value added.

Shrubs and small trees have been difficult to classify in the past because they are often
smaller than the resolution of remotely sensed aerial imagery [75], leading to undercounting
of shrubs and small trees [39]. For instance, even sophisticated machine learning approaches
can yield overall accuracies as low as 48% for shrubs (e.g., [76]) or as high as 88% when
high-resolution data are available and shrubs sharply contrast with surrounding vegetation
(e.g., [77]). It is also not uncommon for shrubs to be combined with herbaceous vegetation
as a potential class (e.g., [78]), reflecting the difficulties of separating herbaceous species
and shrubs. Thus, we hypothesized that shrubs would be our lowest accuracy cover class.
However, we found high accuracy for shrubs in all models (Table 3). Some of this success
may be because the most common encroaching species—C. drummondii—can produce high
Leaf Area Index values, with taller shrubs reaching values typical of dense deciduous or
tropical forests [43]. Foliar nitrogen of woody species in this ecosystem is also high [79]
compared to the surrounding herbaceous vegetation [44]. It remains unclear whether the
data sources and methods we used would perform as well in grasslands with WPE by
shorter, less dense species or grassland matrices with taller, more nutrient-rich swards.
Nonetheless, this study is in the relative minority of succeeding at high-resolution remote
sensing of shrubs in high-productivity ecosystems [28,38,80].
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Machine learning methods: We found that two commonly used machine learning tech-
niques achieved similar accuracy, except in some specific cases, such as remote sensing of
conifers without LiDAR data. RF models added a small amount of accuracy (<2.6%), but
the larger difference was that RFs ran substantially faster than SVM models in R (Table 7).
While the differences in run time meant that most models could train a machine learning
model and project it to our study site in one day, run time would become an issue at larger
spatial extents and over multiple time periods. RF was also slightly less sensitive to the
data source, whereas SVMs’ performance suffered when using only NAIP imagery. RFs
also have the advantage of easily parsing the importance of different input variables, which
is valuable for the synergistic use of multiple remote sensing platforms. These observations
come with the caveat that all analyses were run using common packages in R, with no
substantial effort to optimize run time. Run times will likely differ based on the packages
used or if run in a different coding environment. For computer specifications, see the
methods section.

Accessibility of high-resolution remote sensing remote sensing: Remote sensing now has
many options, such as UAVs, planes, and a growing suite of public and private satellites.
Others have already reviewed the relative advantages of each approach in depth [35,81-84].
Generally, the advantages of low-flying planes, including the ones used here, fall between
UAVs and state-run satellites, with a greater spatial extent than most UAVs and finer spatial
resolution (grain) than most satellites. Low-flying planes can easily carry heavy payloads,
including hyperspectral cameras and high-return high-resolution LiDAR (e.g., [29,40]).
The typical disadvantage of remote sensing via planes is the initial learning curve and
expense of piloting planes, maintaining equipment under flight conditions, and data
cleaning/carpentry. These limitations also mean that remote sensing from low-flying
planes often has lower temporal resolution. For instance, NAIP images are typically
available every two years [36], whereas user-based drones and most satellites provide
multiple measurements per growing season [35,81].

Publicly supported platforms have negated some disadvantages of low-flying planes
by concentrating expertise. Experienced pilots and technologists capture the data. Skilled
data scientists then perform the initial data cleaning and formatting. The result is data in
a format familiar to most end-users (e.g., a raster in “.tif’ format), often free of distortions
such as cloud cover, significant spectral changes due to weather, and seamlines. This
specialization reduces many of the logistical and financial barriers to using high-resolution
data for image classification—a key part of the stated goals of state and federal programs
to democratize scientific pursuits [36,37]. At a minimum, our results suggest that publicly
available imagery can provide proof of concept to motivate more involved approaches
such as UAVs or proprietary satellites. In some ecosystems, such as tallgrass prairie
and similar ecosystems, our results suggest that publicly available imagery can track
vegetation transitions, such as WPE. Similarly, contemporary and historical aerial imagery
from planes has been used to remote sense woody vegetation [40,45,84,85] and WPE
before [8,18,19,23,27,28,38,80,86,87]. The difference is that most of these studies using
plane-based data were from ad hoc imagery. In contrast, one of the sources we use here
is available nationwide in the U.S.A.—USDA NAIP [36]. The other is available for at
least one site for each of North America’s most widespread terrestrial ecosystem types—
NEON AOQP [37]. We were privileged to have such a wealth of publicly available data, and
therefore, echo hopes that similar data become widely available [88].

5. Conclusions

Management of woody plant encroachment, including clonal shrublands and ERC
trees, is costly and time-consuming. Early detection of small individual shrubs and trees
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can allow managers to engage in preventative management while woody plants are still at
low densities and less resistant to disturbances, such as fire. More accurate remote sensing
can help with biodiversity and ecosystem service assessments. We found that two imagery
sources resulted in accurate detection of major forms of WPE, with especially large increases
in accuracy with the addition of LIDAR. Our results suggest that this type of tracking could
succeed in similar ecosystems with relatively low upfront effort and cost, enabling the
adaptive management of biodiversity, ecosystem services, and environmental resilience.
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