

1

Why should I sample feed/forage? How do I use the results?

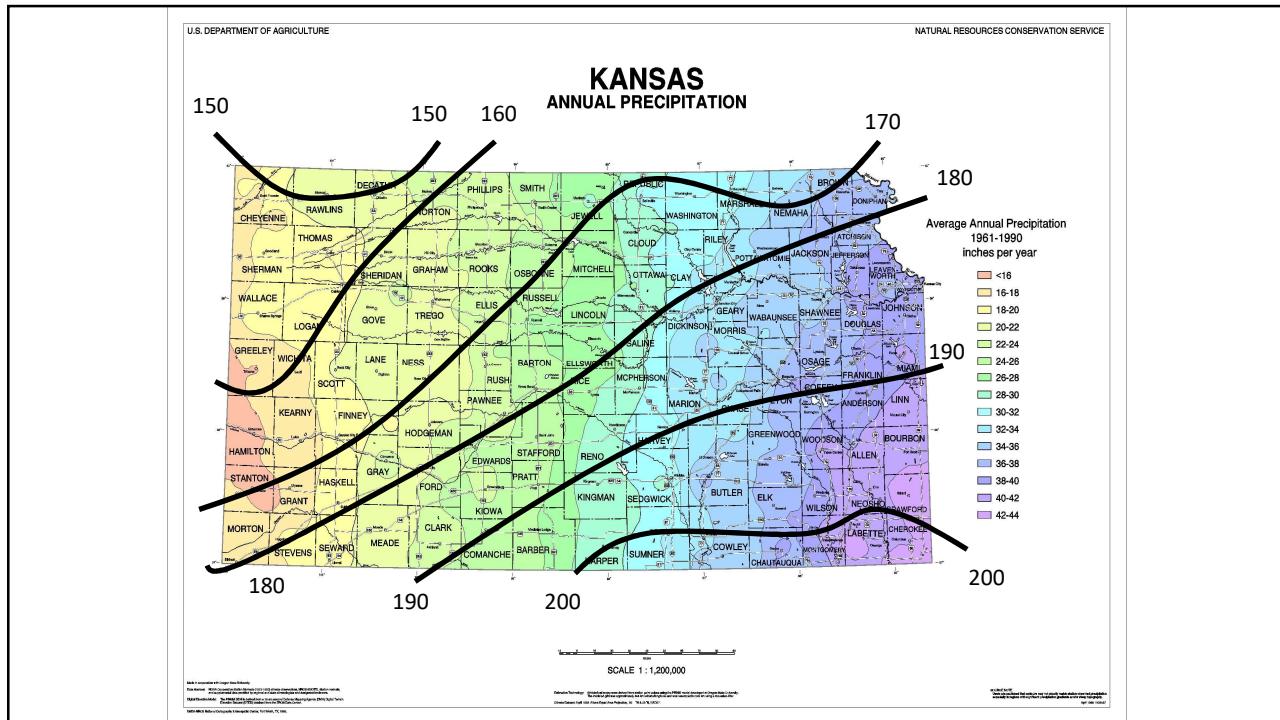
2018 Kansas Forage and Grassland Conference

Dale A. Blasi
Extension Beef Specialist

Emporia, KS - December 11

2

Why Test Forages?

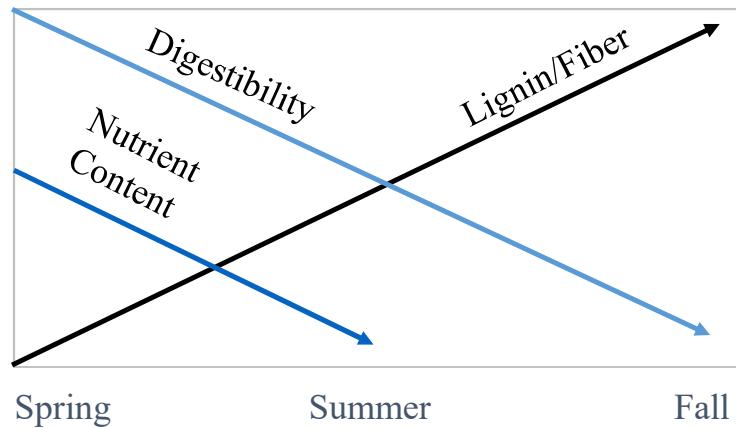

- Feed tests can help establish the dollar value of a forage
- Feed tests can establish the feeding value of your forages and help determine what feeds to feed or sell OR supplements to buy
- Feed tests are useful in evaluating production practices
 - Fertilization
 - Time of harvest
 - Method of harvest

3

Forage plants are the product of their environment

- Soil
- Weather – growing conditions
- Animals
- Disease

4


5

Forage Quality/Utilization

- Pre-harvest
 - Stage of maturity
- Harvest
 - Height of cut
 - Baling moisture
- Post-harvest
 - Storage
 - Method of feeding

6

Growth vs. Quality

7

Factors that accelerate the maturation process

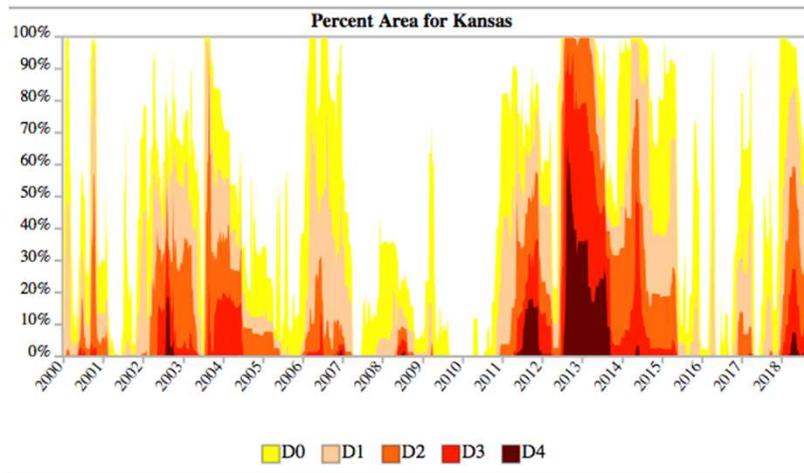
- Temperature
- Light
- Water

8

Influence of Water

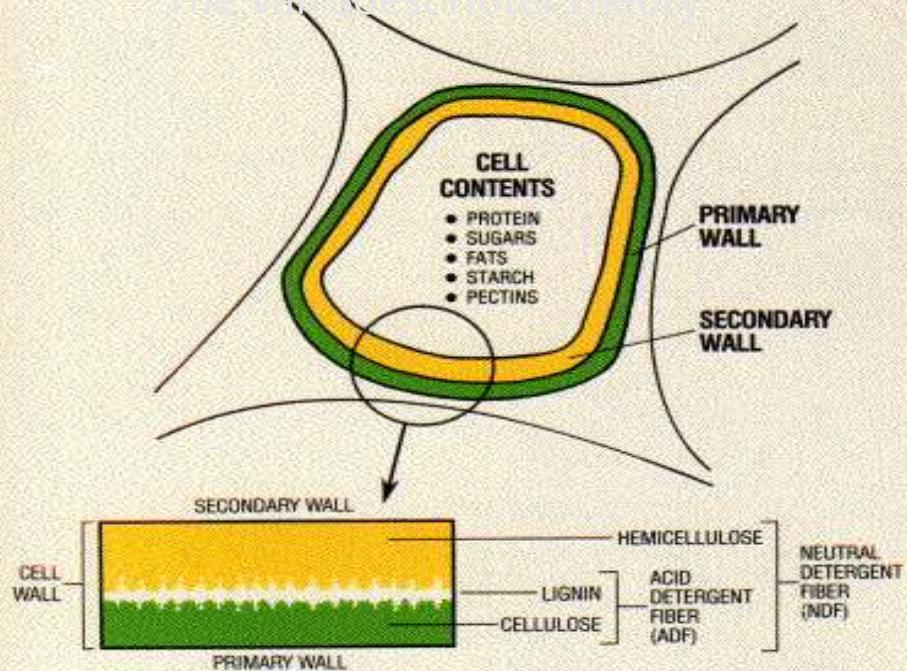
- A water deficiency minimizes the development of the plant, thereby retarding maturity.
 - Therefore:
- This equals increased digestibility while DM yields are reduced.

9


Kansas Drought*

- 1 out of 5 years in eastern Kansas
- 1 out of 3 years in western Kansas

* Years with less than two-thirds average annual precipitation

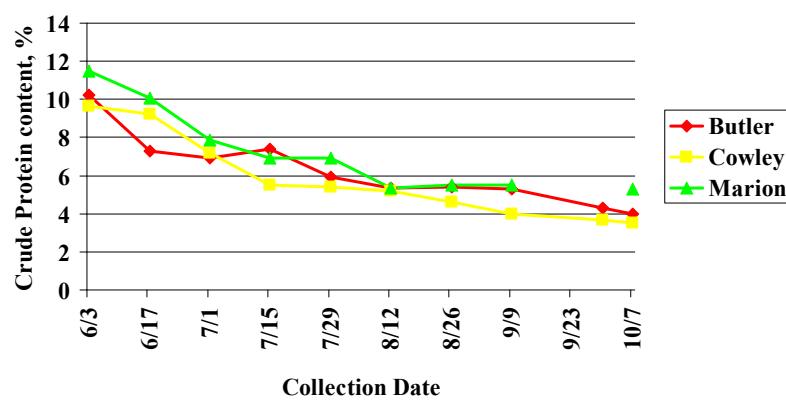

10

Drought in Kansas

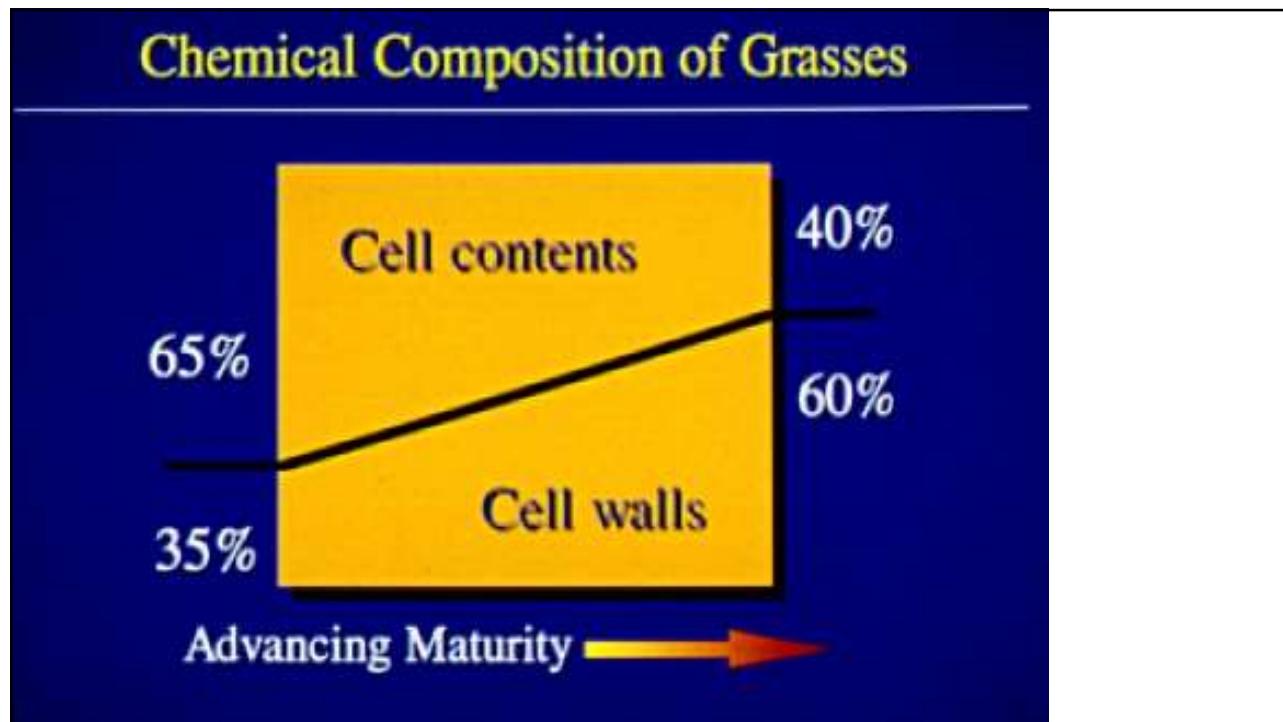
11

The Vassiljev Model Theory

12


Influence of Environmental Factors Upon Composition and Digestibility of Forages^a

Item	Temp.	Light	Nitrogen	Water	Predation
Yield	+	+	+	+	-
Nitrate	-	-	+	+	+
Cell Wall	+	-	±	+	-
Lignin	+	-	+	+	-
Digestibility	-	+	±	-	+

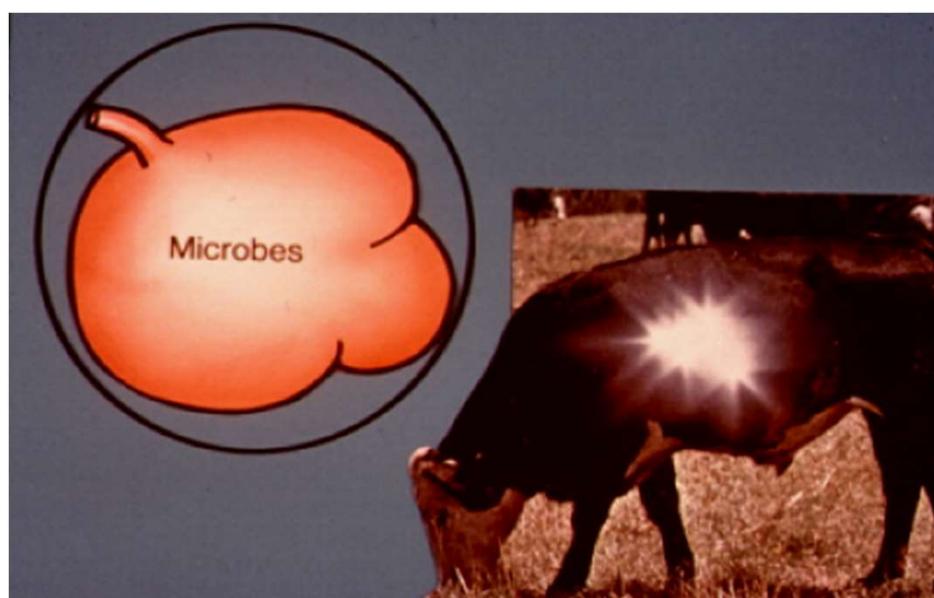

^a Van Soest et al., 1978.

13

% Crude Protein Content of Native Grass Hay by Harvest Date, 1997

14

15


Nutrient Availability of Forage Components (Van Soest, 1983)

<u>Forage Fraction</u>	<u>Component</u>	<u>Nutrient Availability</u>
Cell Contents	Soluble sugars	Complete
	Pectin	Complete
	Soluble Protein	High
	Lipids	High
Cell Wall Elements	Hemicellulose	Partial
	Cellulose	Partial
	Lignin	Indigestible
	Silica	Indigestible

16

17

18

Forage Dry Matter Intake

- Function of:
 - Fermentation rate
 - Rate of particle size reduction
 - Rate of particle passage rate

19

Forage Intake of Beef Cows as Affected by Stage of Production, Forage Quality and Supplement Type^a

Stage of production & supplementation strategy	Forage Quality		
	Low	Medium	High
<i>Dry, pregnant cow</i>		<i>Intake expressed on % body wt, dry matter basis</i>	
Unsupplemented	1.5	2.0	2.5
Protein supplementation	1.8	2.2	2.5
Energy supplementation	1.5	2.0	2.5
<i>Lactating cow</i>			
Unsupplemented	2.0	2.3	2.7
Protein supplementation	2.2	2.5	2.7
Energy supplementation	2.0	2.3	2.7

^aAdapted from Hibberd and Thrift, 1992

20

21

Harvest Losses

- Respiration losses
- Mechanical losses
- Heat damage

22

Weathering Damage of Large Round Bales

- Most damage occurs in the outer 12 inches of the bale
 - 50% of the hay in a bale with a radius of 30 inches is in the outer 9 inches of the bale
 - Proper core-sampling procedures must be adjusted to consider this change

23

Hay Composition in Different Depths of Unprotected Large Round Bales

<u>Sampling interval, in</u>	<u>% of DM</u>	DM, %	IVDDM	NDF	ADF
0-3		56.4	43.0	59.5	46.7
3-6		75.5	50.2	58.1	45.1
6-9		81.0	52.1	58.0	45.2
9-12		82.4	53.0	56.2	43.3
12-30		83.9	55.0	53.5	41.5

24

25

Developing a Sampling Protocol

26

The Sampling Protocol should describe:

- Method of forage collection
- Key forage species
- Key sampling areas
- During transition periods, sampling should occur every 2 weeks
- Monthly during forage dormancy

27

What is a forage lot ?

- A forage lot consists of forage harvested from one field:
 - at the same cutting and maturity within a 48-hour period
 - Usually contains fewer than 100 tons of hay.
- A forage lot should be similar for forage type, field (soil type), cutting date, maturity, variety, weed infestation, type of harvest equipment, weather during growth and harvest and storage conditions.

28

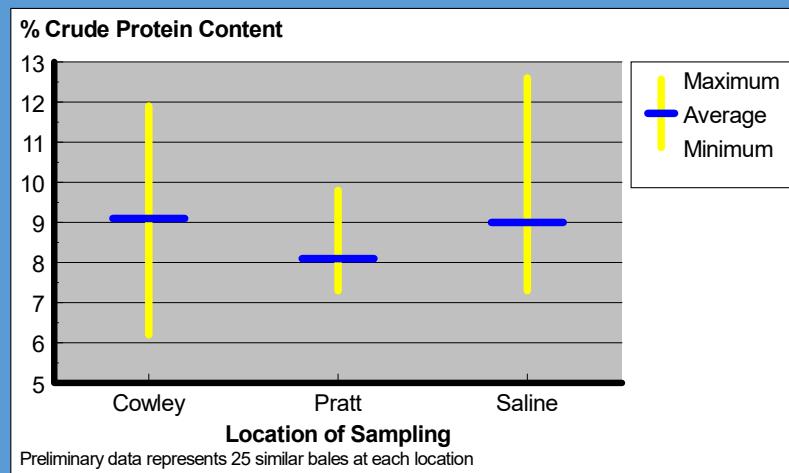
Select Uniform Lots of Hay

	Hay field 1 st cut		Hay field 2 nd cut		
	Grass infested	Pure	Grass infested	Pure Rain Damage	Pure No Rain
Lot #	1	2	3	4	5

29

Segregate Each Lot as It is Harvested and Stored

- When segregating by quality, a better job can be done nutritionally by feeding according to specific animal production requirements
- This will greatly facilitate access so that it may be retrieved as needed
- This is especially important step in a hay marketing operation.


30

Where Does Variation Arise?

- Field Variation
 - Weed infestation
 - Soil and fertility differences
- Harvest Variation
 - Equipment/conditioner differences
 - Management philosophy
- Sampling Error
 - Location of bale
 - Location/depth of core sample

31

Variation in Crude Protein Content of Cane Hay - Preliminary Results

32

Nitrate Variation in Sudan Hay Bales From the Same Field – C. Garten 1989

- Nitrate content of 23 bales collected from the same field averaged 2,764 ppm but varied from 1,525 to 6,250 ppm on an as-fed basis
- Thus, the nitrate level in individual bales varied more than TWO – FOLD from the average.

33

Recommended Number of Large Round Bales to Sub-sample and Composite

Forage Type	Precision of average CP Estimate, %	Confidence Interval		
		99%	95%	80%
1 st alfalfa	±1	19	11	5
	±5	76	44	19
3 rd alfalfa	±1	12	7	3
	±5	47	27	12
Prairie hay	±1	4	2	1
	±5	15	9	4
Sudan hay	±1	7	4	2
	±5	28	16	7

Blasi, et al., 1995

34

35

Bales should be probed from the sides,
not the ends

36

Do Not Submit a flake of hay or use the “grab” sample technique

37

When Do You Sample?

Forages should be sampled as close to the time of feeding or sale as possible

38

19

Sampling Silage

- Sampling silage at harvest will give one an idea about the feeding value prior to feeding.
- Because of fermentation changes, another sample should be tested when feeding begins.
- Multiple samples should be collected, combined and then sub-sampled from the total before submitting to a laboratory.

39

Collecting a feed sample

- The entire sample should be placed in a plastic bag and sealed to retain the moisture level at the time of sampling.
- The sample(s) should be labeled properly.
- The sample(s) should then be stored in a cool place until it is shipped to the laboratory.
- Send the sample(s) to the laboratory A.S.A.P. via UPS or USPS.

40

Methods of Feed/Forage Testing

- **Physical** – Sight, smell and touch are useful, although frequently misleading indicators of feed value.
- **Chemical** – When representative feed samples are tested chemically, accurate predictions of animal performance usually can be made.
- **NIR Spectroscopy** – Rapid, low-cost computerized method with questionable reliability

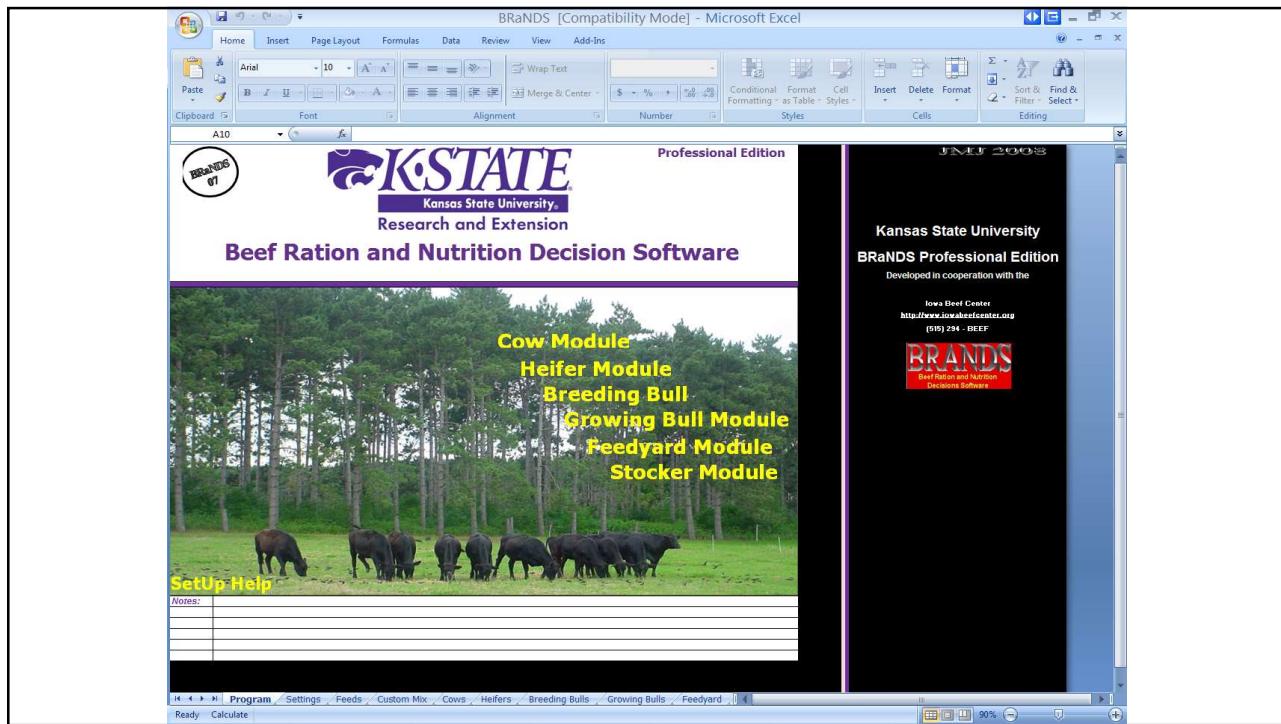
41

Net Energy of Native Range Calculated from ADF

- $\%TDN = 88.9 - (0.779 \times ADF)$
- $ME \text{ (Mcal/kg)} = (TDN\% \times 0.044) \times 0.82$
- $NE_m \text{ (Mcal/lb)} = (1.37 \times ME) - (.138 \times ME^2) + (.0105 \times ME^3) - 1.12 / 2.204$
- $NE_g \text{ (Mcal/lb)} = (1.42 \times ME) - (.174 \times ME^2) + (.0122 \times ME^3) - 1.65 / 2.204$

NRC (1996)

42


Relative Feed Value (RFV)

- RFV has no units but is used only as an index to compare the potential of two or more like forages for energy intake
- Forages with NDF = 53% and ADF = 41% represent a RFV of 100.

43

How Do I Use the Results?

44

45

BRaNDS [Compatibility Mode] - Microsoft Excel																		
Feed Library		Producer: KSU Winter Ranch Mgt Seminar																
		Help More Tips																
* Select #	Feeds	* Feedstuff	Lb/unit	\$/unit	Units	Inventory	* DM %	* TDN %	* NEg Mcal/lb	* CP %	* DIP %	Solubility %	* NDF %	ADF %	* % NDF	NFC %	Salt %	
		Water	8.3												100	100		
		1 DRY ROUGHAGE																
1		2 Alfalfa- mid bl	2000	\$100.00	1.00	88.00	58.00	0.56	0.31	17.00	80.00	25.00	46.00	37.00	82.00	22.00		
		3 Alfalfa- late b	2000	\$60.00	1.00	85.00	55.00	0.52	0.27	15.00	80.00	22.00	50.00	40.00	82.00	20.00		
		4 Alfalfa- mature	2000	\$60.00	1.00	85.00	50.00	0.44	0.19	13.00	80.00	20.00	55.00	45.00	82.00	18.00		
		5 Alfalfa Meal	2000	\$200.00	1.00	88.00	61.00	0.61	0.35	18.00	80.00	22.00	45.00	35.00	6.00	25.00		
		6 Bluegrass- mid	2000	\$60.00	1.00	85.00	63.00	0.64	0.38	14.00	90.00	22.00	68.00	52.00	82.00	20.00		
		7 Bluestem- past	2000	\$60.00	1.00	28.00	65.00	0.67	0.41	11.00								
		8 Bluestem- dorman	2000	\$60.00	1.00	80.00	43.00	0.32	0.08	4.00								
		9 Brome- pre bloom	2000	\$60.00	1.00	88.00	58.00	0.58	0.32	16.00								
		10 Brome- mid bloom	2000	\$60.00	1.00	90.00	54.00	0.51	0.25	10.00								
2		11 Brome- Maturity	2000	\$60.00	1.00	90.00	50.00	0.49	0.19	5.00								
		12 Buffalo- vegetat	2000	\$60.00	1.00	26.00	66.00	0.68	0.42	10.00								
		13 Buffalo- dormant	2000	\$60.00	1.00	80.00	46.00	0.37	0.12	5.50								
		14 Clover- mid blo	2000	\$60.00	1.00	89.00	55.00	0.52	0.26	15.00								
		15 Corn Cobs	2000	\$60.00	1.00	85.00	50.00	0.44	0.19	3.20	70.00	15.00	88.00	65.00	56.00	10.00		
		16 Cottonseed hull	2000	\$60.00	1.00	91.00	42.00	0.31	0.07	4.10								
		17 Fescue-winter	2000	\$60.00	1.00	35.00	54.00	0.51	0.25	11.00								
		18 Fescue-win.no N	2000	\$60.00	1.00	86.96	52.20	0.47	0.22	10.20	80.00	20.00	69.10	47.10	75.00	19.00		
		19 Fescue-Late blo	2000	\$60.00	1.00	88.00	53.00	0.48	0.23	7.50								
		20 Ladino Clover	2000	\$60.00	1.00	85.00	55.00	0.67	0.40	22.00	80.00	28.00	36.00	22.00	82.00	30.00		
		21 Koschia Hay	2000	\$60.00	1.00	89.00	50.00	0.44	0.19	11.00								
		22 Oat Straw	2000	\$50.00	1.00	88.00	50.00	0.44	0.19	4.40	70.00	5.00	70.00	60.00	82.00	8.00		
		23 Orchard Grass	2000	\$60.00	1.00	85.00	65.00	0.67	0.40	8.40	80.00	15.00	65.00	45.00	82.00	15.00		
		24 PrairieHayEarly	2000	\$60.00	1.00	90.00	55.00	0.52	0.26	9.00								
		25 PrairieHayLateB	2000	\$60.00	1.00	90.00	51.00	0.45	0.20	5.80								
		26 Red Clover	2000	\$60.00	1.00	85.00	50.00	0.51	0.27	10.00	80.00	25.00	46.00	34.00	82.00	28.00		
		27 Soybean Stover	2000	\$50.00	1.00	83.00	49.00	0.27	0.04	12.00	70.00	15.00	75.00	60.00	82.00	15.00		
		28 Sunflower Seeds	2000	\$60.00	1.00	85.00	56.00	0.53	0.28	8.80	80.00	18.00	68.00	55.00	82.00	18.00		
		29 Wheat Straw	2000	\$60.00	1.00	100.00	41.00	0.64	0.11	3.50	31.00	20.00	78.90	98.00	98.00	100.00		
		30 Wheat straw-Amn	2000	\$60.00	1.00	90.00	50.00	0.43	0.18	9.00								
		(your own)																

46

BRaNDS [Compatibility Mode] - Microsoft Excel

Inputs

File Utilities

Save | Restore | Delete

Feeding period - start: 1/15/11 | Feeding period - end: 2/15/11 | Mature cow size: large | Breed type: British, higher milk | Current condition score: 5 | Desired condition change: +1/4 CS/mol | Production stage: 3rd trimester | Notes for Summary Printout:
head | Wt. overrite: 1400 lbs

Calf birth weight: moderate | Wind exposure: full | Hair condition: clean, dry | Hair coat: heavy, winter | Temperature: 10 o colder | 20 degrees F | Maintenance adj.:
Cow group size: 1st calf: | 2nd calf: | Mature: |
1st calf: | 2nd calf: | Mature: |
head | Wt. overrite: 1400 lbs

Ration Balancing Screen

Tips: Producer: KSI Winter Ranch Mtg Seminar Feed Library: feedmill

Ration Composition

Formulate | Save | eDMI Level: 35.0% | Consumption Ratio: 100.0% | Balanced for (head): 1

	lbs./day	% waste	TMR mix	% of DM	% of As-Fed
Alfalfa- late b	8.00	5.0	x	19.14%	17.32%
Brome-Mature	32.00	x	75.60%	76.97%	
Native-Winter	2.50	5.0	x	5.26%	5.71%
DDGw/S					
36 natural					

Ration Evaluation

Scale intake? yes | Feed delivered corresponds with mature cow.

Balance	Mature cow
Dry matter intake	33.9 lbs.
Estimated DMI	34.4 lbs.
Consumption	98%
Net energy rgntr.	150%
Met. protein rgntr.	94%

Water: 13.5 gallons/ hd. 81.4% Ration DM | Crude Protein: 41.8 % ByPass 33.7 % Soluble

Program | Settings | Feeds | Custom Mix | Cows | Heifers | Breeding Bulls | Growing Bulls | Feedyard | Print | Ready

47

BRaNDS [Compatibility Mode] - Microsoft Excel

D41

status: low | low | low | low | low | warning | low | ok | low | low | ok | 107.87

Conc.: 0.06% | 0.63% | 0.10% | 26.05 | 0.17 | 107.87

Batch Mix Sheet

Select either batch size or number of head. Mix-based on number of head

Number of head: 0 head | Mixes per day: | Increment: 1 head

Mix-based on batch size

Batch size lbs: | Increment: 1.00% | 0 head | lbs. / day

Formulation Printouts

Select button to print the desired report.

- Ration Summary
- Mineral & Vitamin Report
- Nutrient Graph
- Ration Adequacy
- Ration Adequacy Graph
- Blend Mix Sheet
- Feed Analysis

Ration Plan Sheet

Indicate up to 3 different rations to feed and print report.

Ration #1: Head on Feed: | Date starting: | Date ending: | Notes: |
Ration #2: Head on Feed: | Date starting: | Date ending: | Notes: |
Ration #3: Head on Feed: | Date starting: | Date ending: | Notes: |

Feed Requirement for Period

The daily use values listed below are based on the number and maturity of animals listed above in the input section.

46 Day(s)	2/15/11	through	4/3/11	Head	2	= % Storage shrink	Print
Daily Requirement				Period - Total Feed	Period - Bulk Feed		

Program | Settings | Feeds | Custom Mix | Cows | Heifers | Breeding Bulls | Growing Bulls | Feedyard | Print | Ready

48

BRaNDS [Compatibility Mode] - Microsoft Excel

Print Preview

Print Page Setup Zoom Next Page Previous Page Show Margins Close Print Preview

Print Zoom Preview

1/10/2011

KSSTATE
KSU Winter Ranch Mgt Seminar Cow Ration Summary

Inputs

		Ration \$ / ton
Feeding period-	2/15/11 - 4/1/11	333.33
Mature cow size	1400 lbs	Calf birth wt. moderate
Breed type	British_higher_milk	Wind exposure full
Current condition score	5	Hair condition clean_dry
Desired condition change	+2/4 QSR/mo	Hair coat heavy_winter
Production stage	Early_lactation	Temperature 10 o colder
		Mgmt. Adjustment

Daily

Feed	Feed % of	Head count per group	Ration Statistics	
Ration Summary lbs./hd.	DME			mature
Alfalfa- late b	10.00	20.8%	Dry matter intake (lb/hd/d)	38.8
Brome-Mature			Estimated DMI	38.3
Native-Winter	34.00	75.0%	Consumption	10.1%
DDG/BS			Net energy rntn.	133%
36 natural	5.00	9.2%	Netrb. protein rntn.	93%

Projected performance

	Daily int gain above pregancy
DME : WT (%)	2.77
BC : Condition change (pts)	0.08
Desired ADG (lbs)	0.77
Ration projected ADG (lbs)	0.25
Excess protein+NEadj.(Mc/d)	
Feed \$/hd/day	\$1.36
Feed cost/group/day	

Feed Delivered

	Crude Protein	10.4%	Selb. %	0.29%	
Feed Delivered	49.0 lbs.				
Feed Consumed	48.3 lbs.	CP Degradability	22.7%	Ca:lime	
Ration Dry Matter	80.5 %	D:P Ratio	1:41	Phosph.	0.26% 0.29%
TON	54.4 %	CP Solubility	33.3%	Magnes.	0.06% 0.22%
NE-m / g	0.89	NFC	35.7%	Potass.	0.63% 0.75%
Fat	2.62 %	eNDF	27.8%	Sulfur	0.10% 0.14%
Notes		ADF NDF	9.1%	VITA-4EU	1011.8 68.7

Iowa Beef Center — Cow Module Kansas State University Research and Extension

49

Livestock Feeding Programs

- Can be improved by relying on forage analyses to plan and balance rations.
- However, lab analyses are only useful if the sample represents what your animal consumes.

50

Dale A. Blasi
Kansas State University

dblasi@ksu.edu

